A novel DNA damage recognition protein in Schizosaccharomyces pombe
نویسندگان
چکیده
Toxic and mutagenic O6-alkylguanine adducts in DNA are repaired by O6-alkylguanine-DNA alkyltransferases (MGMT) by transfer of the alkyl group to a cysteine residue in the active site. Comparisons in silico of prokaryotes and lower eukaryotes reveal the presence of a group of proteins [alkyltransferase-like (ATL) proteins] showing amino acid sequence similarity to MGMT, but where the cysteine at the putative active site is replaced by tryptophan. To examine whether ATL proteins play a role in the biological effects of alkylating agents, we inactivated the gene, referred to as atl1+, in Schizosaccharomyces pombe, an organism that does not possess a functional MGMT homologue. The mutants are substantially more susceptible to the toxic effects of the methylating agents, N-methyl-N-nitrosourea, N-methyl-N'nitro-N-nitrosoguanidine and methyl methanesulfonate and longer chain alkylating agents including N-ethyl-N-nitrosourea, ethyl methanesulfonate, N-propyl-N-nitrosourea and N-butyl-N-nitrosourea. Purified Atl1 protein does not transfer methyl groups from O6-methylguanine in [3H]-methylated DNA but reversibly inhibits methyl transfer by human MGMT. Atl1 binds to short single-stranded oligonucleotides containing O6-methyl, -benzyl, -4-bromothenyl or -hydroxyethyl-guanine but does not remove the alkyl group or base and does not cleave the oligonucleotide in the region of the lesion. This suggests that Atl1 acts by binding to O6-alkylguanine lesions and signalling them for processing by other DNA repair pathways. This is the first report describing an activity that protects S.pombe against the toxic effects of O6-alkylguanine adducts and the biological function of a family of proteins that is widely found in prokaryotes and lower eukaryotes.
منابع مشابه
Non-productive DNA damage binding by DNA glycosylase-like protein Mag2 from Schizosaccharomyces pombe.
Schizosaccharomyces pombe contains two paralogous proteins, Mag1 and Mag2, related to the helix-hairpin-helix (HhH) superfamily of alkylpurine DNA glycosylases from yeast and bacteria. Phylogenetic analysis of related proteins from four Schizosaccharomyces and other fungal species shows that the Mag1/Mag2 duplication is unique to the genus Schizosaccharomyces and most likely occurred in its anc...
متن کاملA novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein.
In Schizosaccharomyces pombe, rad18 is an essential gene involved in the repair of DNA damage produced by ionizing radiation and in tolerance of UV-induced DNA damage. The Rad18 protein is a member of the SMC (structural maintenance of chromosomes) superfamily, and we show that, like the other SMC proteins in condensin and cohesin, Rad18 is a component of a high-molecular-weight complex. This c...
متن کاملThe Schizosaccharomyces pombe S-phase checkpoint differentiates between different types of DNA damage.
We have identified an S-phase DNA damage checkpoint in Schizosaccharomyces pombe. This checkpoint is dependent on Rad3, the S. pombe homolog of the mammalian ATM/ATR checkpoint proteins, and Cds1. Cds1 had previously been believed to be involved only in the replication checkpoint. The requirement of Cds1 in the DNA damage checkpoint suggests that Cds1 may be a general target of S-phase checkpoi...
متن کاملAnalysis of substrate specificity of Schizosaccharomyces pombe Mag1 alkylpurine DNA glycosylase.
DNA glycosylases specialized for the repair of alkylation damage must identify, with fine specificity, a diverse array of subtle modifications within DNA. The current mechanism involves damage sensing through interrogation of the DNA duplex, followed by more specific recognition of the target base inside the active site pocket. To better understand the physical basis for alkylpurine detection, ...
متن کاملCdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast.
A common cellular response to DNA damage is cell cycle arrest. This checkpoint control has been the subject of intensive genetic investigation, but the biochemical mechanism that prevents mitosis following DNA damage is unknown. In Schizosaccharomyces pombe, as well as vertebrates, the timing of mitosis under normal circumstances is determined by the balance of kinases and phosphatases that reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006